
Symmetric, hash-based encryption

by Salko Korac
40517266@live.napier.ac.uk

Applied cryptography coursework
MSc Advanced Security & Digital Forensics

Abstract
Established symmetric encryption methods use fixed key lengths.

This practical coursework aims flexibility and security
by supporting anything from any length as key input.

Coursework Advisor: Prof. Bill Buchanan, Edinburgh Napier University, UK
Coursework submitted: May 14, 2021
Last revision: May 14, 2021

1

Introduction

The hash functions Blake3, KangarooTwelve (“K12”) and Shake support outputs of arbitrary length. This coursework will evalu-
ate this hash functions as Key Derivation Function (KDF) and Extendable Output Function (XOF). In regards to the predecessor
Blake2, only the fork Blake2X supports outputs of arbitrary length; a rust implementation was not found. Therefore the Blake2
family was not considered in this coursework. To ensure comparability, all tests were performed with the respective rust crates
“b3sum”, “k12sum” and “rash” in single-core mode.

Blake3 is well-promising in terms of speed and supports multi-threaded processing on multi-core CPUs. Shake and KangorooT-
welve were derived from Keccak. Keccak won the NIST contest for the next generation hash function in 2012 (i.e. now known as
SHA-3).

Speed and security of the hash functions are the two main criteria. The best balanced performer in both criteria will be used for a
proof of concept. The speed was measured in two dimensions (i.e. input size and output size), while the security was evaluated by
a literature review.

Speed of hash functions

The tested input sizes were 1 KB to 10 GB. The tested output sizes were 32 bytes to 1 GB, dumped as HEX. The measurement
was done on three different platforms: notebook with Intel i7 x64 and SSD, Android mobile with ARMv8 and eMMC, as well as a
dedicated cloud server with Xeon x64 and HDD. The system setup is visible in appendix a. As shown in figure 1, each hash opera-
tion was repeated 10 times and the average time was calculated to avoid unwanted breakouts during the measurement. The shell
script used for the speed test is attached in appendix e. The raw results are attached in appendix b, c and d.

Figure 1: execution of the speed test.

For Blake3, the measurement showed: On system 1 (x64, i7) and system 3 (x64, XEON) the input size did not influence the hash
speed so much. For example, on system 1, Blake3 needed 0.00813 seconds to hash a 1KB file to 32 bytes. And for 10GB, Blake3
needed only 1.47779 seconds. Exceptionally outstanding is system 2 (ARMv8). The afore-mentioned speed results are not valid
here. The Samsung Galaxy Tab S5e needed 0.03526 seconds to hash a 1 KB file. But for 10 GB, the system needed 35.86665
seconds. Full details can be seen in appendix b.

For K12, the measurement showed: The results were very similar to Blake3. K12 was in many cases faster than Blake3, when in-
put files were small (i.e. < 5 MB) or output was bigger (> 200 MB < 1 GB). But when it came to very large input files, K12 fall
slightly behind Blake3. For example, to hash a 10 GB file to 32 bytes, K12 needed 4.59177 seconds. Blake needed for same task
1.47779 seconds. The difference of approx. 3.11398 seconds is also visible when expanding the hash to 1 GB. To hash same file to
1 GB output, K12 needed 9.78375 seconds where Blake3 needed 6.20759 seconds. The reason for that is mainly due to higher
number of rounds compared to Blake3, while the sponge functions of K12 and Blake were pretty similarly fast.

For Shake, the speed was the slowest as can be seen in table 1. For example, hashing a 10 GB file to 32 bytes took 33.37358
seconds on system 1, where Blake3 needed 1.47779 seconds as afore-mentioned. In conclusion, the speed was assessed as imprac-
tical for hash-based encryption, and therefore it was not considered any-more. In general, Shake is a excellent hash function,
which provides very good security and has it’s legitimate use cases (e.g. password hashing).

2

Hash function
on system 1

Speed @ 1 KB input,
32 bytes output

Speed @ 1 GB input,
32 bytes output

Speed @ 10 GB input,
32 bytes output

Blake3 0.00813 0.11541 1.47779
K12 0.00275 0.48192 4.59177
Shake 0.01096 3.5393 33.37358

Table 1: hashing of different input files to 32 bytes on system 1 (in seconds)

Hash function
on system 1

Speed @ 10 MB input,
1 KB output

Speed @ 10 MB input,
100 MB output

Speed @ 10 MB input,
1 GB output

Blake3 0.00474 0.54758 5.67466
K12 0.00597 0.57576 6.18107
Shake 0.03583 2.53898 25.63152

Table 2: hashing of a 10 MB file to different output sizes on system 1 (in seconds)

Hash function
on system 1

Speed @ 10 GB input,
1 GB output

Blake3 6.20759
K12 9.78375
Shake 58.78856

Table 3: hashing of large input and to large output on system 1 (in seconds)

The winner?
The speed test proofed that hash functions are in general fast enough to be used in a hash-based stream cipher. It is hard to nomin-
ate an winner. Blake3 was unbeatable when large files have to be hashed. In case of smaller inputs and larger outputs, in many
cases, K12 is a be a better choice. For mobile applications, K12 has significant advantages, as it performed best at smaller inputs.
For storage based encryption, Blake3 is be a better choice. This coursework prefers Blake3 for implementation, as it provides a
well-balanced speed in all situations.

Critical appraisal for executed speed tests
Please read the chapter “Conclusions”.

Why hash concatenation was not considered?
Why established hash functions (e.g. SHA-512) were not considered?
We will assume following: A file of 100 MB needs to be encrypted. Assuming that the processing is done with the raw bit stream,
156.250 SHA-512 operations are needed. If the key is a 10 MB file, 0.027s are needed for one SHA-512 operation on system 1
(i.e. x64 arch). To expand this to 100 MB size, approx. 70.31 minutes would be needed. Even if the performance can be improved
slightly by some tweaks, this range is way beyond the required speed. Therefore the idea of SHA-512 chained outputs was not fol-
lowed up. For the afore-mentioned task, Blake3 needed 0.54758 seconds instead of 70.31 minutes.

3

Security Review

KangarooTwelve has 12 rounds, which is seen as a sufficient safety margin [1] . However, some derivates like “MarsupilamiFour-
teen” use 14 rounds to increase the complexity of the attack. The original Keccak algorithm uses 24 rounds, thus it is more secure,
but also slower. For Keccak, a collision attack was possible only up to 6 rounds [2, 3]. Therefore the security margin is still suffi-
cient.

Blake3 has 7 rounds, which is the major reason for the unbeatable speed. The predecessor Blake2b uses 12 rounds and Blake2s 10
rounds [4]. While the Blake hash family is seen as still secure, there are proofs that the complexity of Boomerang attacks was
lowered to 2^184 [5]. Blake3 targets 128-bit security against (second-) preimage, differentiability or collision attacks [6]. The re-
duction to 7 rounds is justified based on long term efforts in cryptanalysis for Blake (version 1) and Blake2 [6]. In conclusion, the
authors are of the opinion that a hash function can also be secure with a lower number rounds and benefit from speed. To enhance
the security, the Blake3 compression function was improved compared to the predecessor Blake2 (e.g. finalization returns 16
words instead of 8).
Cube attacks on Blake were researched and not followed-up any more due to expected failure [7]. For Blake2, theoretical attacks
on the 2.5 rounds on a reduced version were possible [8]. During the competition for SHA-3, NIST assessed that Blake and Kec-
cak “have very large security margins” [9]. However, this applies to the predecessor versions and it is not ensured that this assess-
ment applies to Blake3 and KangarooTwelve as well. Relevant documented attacks for Blake3 were not found.

In conclusion, Blake3 was chosen for implementation. First of all, there were no relevant proofs of security weaknesses found for
Blake3 and its predecessors; there was no indicator found that Blake3 is broken or insecure for the goal of this coursework. This
coursework continues under the assumption that Blake3 is secure and the speed remains as the major selection criteria. Anyway, if
any doubt on the security occur in future, it is easily possible to replace Blake3 by another hash function or to increase the itera-
tions or the rounds. In conclusion, Blake3 is very fast especially for big files. The rust implementation of Blake3 supports multi-
core CPUs, which can enhance more speed.

For all hash functions it is necessary that the input and output is selected long enough to ensure the security. For KangarooTwelve,
it is recommended to choose the output at least at 128-bit to ensure 128-bit (second-) preimage security; for 128-bit collision se-
curity output should be at least 256-bits [2].

4

Concept of symmetric, hash-based encryption

As displayed in figure 2, Alice and Bob use a hash box (“h-Box”) to derive a key for the message. The h-Box takes anything as in-
put, but at least one long-term secret (e.g. a picture or any other digital good), a true random salt to avoid dictionary or rainbow at-
tacks and the time to avoid replay-attacks. More custom inputs are possible (i.e. Xi).

The hash result will be expanded to the length of the plain text. A XOR operation will take the plaintext Pi and the expanded hash
result Hi as input. The hash function acts like a trapdoor function, where the creation of a hash Hi is easy, but the reverse function
is impossible and finding an collision is a hard problem.

Figure 2: overview of the encryption and decryption process

For decryption, the process is the same as encryption, which is defined as:

Ci=Pi Hi(K, IVi, Ti, Xi) ⊕
Pi=Ci Hi(K, IVi, Ti, Xi) ⊕
where len(Hi)=len(Pi)=len(Ci)

5

Implementation of SHE proof of concept

This coursework aims a basic implementation in a proof of concept quality. An implementation was evaluated in different lan-
guages (e.g. C-, rust- or python-based) but withdrawn at an early stage because of disappointing speed achievements. It turned out
that the most effective way is to use the Blake3 rust crate “b3sum”. For the proof of concept, the h-Box function was implemented
only for a single long-term secret; the initialisation vector IVi, the time Ti and Xi were not considered in the proof of concept.
The shell script can be found in appendix f.

SHE.sh asks for the key file, the plaintext file and the desired output name. In a first step, the script derives a key out of the given
key file. This steps includes also to find out the size of the plaintext file to stretch the key respectively. Finally, the script performs
a file-based XOR encryption. The xorfiles tool was compiled from github.com/sciguy16/xorfiles.

./SHE.sh

Enter your key file: new21Scollectionhome.jpg
Enter your input file: plain_10MB.txt
Enter your output file: plain_10MB.txt.enc
========================= STEP 1: derive key

real 0m0.026s
user 0m0.026s
sys 0m0.009s
========================= STEP 2: XOR the two files together

real 0m0.113s
user 0m0.092s
sys 0m0.020s
========================= STEP 3: en-/decryption finished. Cleaned up. See output.

If the file plain_10MB.txt.enc is decrypted, the decrypted file and the original file are equal according to sha256sum:

e5b844cc57f57094ea4585e235f36c78c1cd222262bb89d53c94dcb4d6b3e55d plain_10MB.txt.dec
e5b844cc57f57094ea4585e235f36c78c1cd222262bb89d53c94dcb4d6b3e55d plain_10MB.txt

In the afore-mentioned example, new21Scollectionhome.jpg is a picture of 500kb and the plaintext file plain_10MB.txt was
created out of /dev/null.

Excerpt of the derived key, converted from RAW to HEX:

43dd24a6aeef6610dd77b09fad04da47333a9c5cde055291b342eac41df
e39c57d8c98688b7f78a362ebb06011ffb36b800071ff5837d4989e27664
3015f049b996838f1975c6ba8aeea63384d8107303061c41b1d060898b09
7e2c93b62669a8f337cacc9e1462525f8789f6d678843f4aa8063af65eec
0a36dca6b59ad5bdeff7361c728f36f39b5820f0c506dea499e2f3067c86
846d475eb59a23afcb793a931d5e307b8a2ef7b06b8234b9214439bda0e2
91969692c55dd69fc09253d73bec2dd0cc1e5a2874a6c3f73f6b30a6f9fb
530b1ec33640f0baea0db781b2d99f7bde4d8a9298048b0b3e8a4cde926c
9575dac135b868ebebc386f3cbe05d1dc56f59985ab510c21e076b5fc6bb
9818e97bebfc9f16c0cae0f773051a1cc19c48b2b65157731f62c3a97801
118ce93494aabb270b27e8b4094f597e3c05d89019d37cf6a2a397786e02
e332a62dd3bc705d95ce120c4dff177b706236bc0bd723458387dfd2f9d2
f759d15038fe27a015f1ee03c30c1aec1f4658e6758d577e3d900a63d2bc
db49f18fe6d1aedf153c75140a36cb1e5fea5b87744b9a767c5a9b0002ee
acd2a7b3062060887074df634d4c01e335e45d939439da877561640f0251
……

6

https://github.com/sciguy16/xorfiles

Evaluation

As shown in table 4, the time was reduced significantly when dumping the hash output in raw format instead of as HEX.

Output of 500.000.000 byte length Speed in s
In RAW (500 MB) 0.467
As HEX (1 GB) 4.070

Table 4: speed – Dumping in hex vs. dumping in raw format.

In general, the speed results were well-promising. But, the selected XOR file operation took the most time as shown in table 5.

SHE encryption in s
with 1 MB key

10 MB file 100 MB file 1 GB file

h-Box operation* 0.027 0.161 1.457
XOR Encryption
(i.e. file based)

0.113 1.099 11.113

Total 0.14 1.26 12.57
* including XOF function and writing temporary file to disk

Table 5: sample encryption speed

The ultimate goal is to reach AES encryption speed levels. The AES encryption result for same files is visible in table 6. The
SHE.sh script took up to 6.6 times longer than AES, which is mainly due to the inefficient XOR operation and writing data tem-
porary to disk. Considering the “quick-and-dirty” proof of concept implementation and a relatively big key size of 1MB, this is a
respectful result. It is very interesting what speed can be achieved after implementation of a state-of-the-art XOR-function. This
task is a good follow-up work.

AES encryption in s 10 MB file 100 MB file 1 GB file
128-CBC 0.033 0.205 1.889

Table 6: AES encryption speed (i.e. 128-CBC mode)

7

Conclusions

Definition of follow-up work
The course work represents a practical experiment. Further work is necessary:
- Detailed analysis of the speed results, especially calculation of throughput (i.e. efficiency).
- State-of-the-art code implementation, especially implementation of a fast XOR function.
- After state-of-the-art code implementation, benchmark against AES.
- Research if hash-based encryption can be used in or to enhance public key cryptography.

Advantages of hash-based encryption
1. New Use-Cases: hash-based encryption enables many new use cases; the user can fill h-Box arbitrarily, which increases

the attacking complexity as well. But, finally, the security is always restricted by the security of the hash function.
Possible uses cases are e.g.:

1. Encryption depending on where you are: The system environment (e.g. the kernel) can be included in the h-Box.
In consequence, once encrypted, decryption requires to be inside the same pre-defined environment / machine.

2. Encryption with things you own and things you know: The h-Box can be filled with everything you own (e.g.
pictures, movies, hash of usb-sticks) as well as your individual secrets.

3. Additional protection against reading attempts: Audit logs can be used to enforce control of encryption and de-
cryption. For example, the audit log of a HSM can be part of the h-Box. The rotating audit log of YubiHSM 2
supports 62 entries. The first 60 entries could be put into the h-Box. In consequence, the audit log rotates and in-
formation needed for decryption gets lost in case of multiple unwanted reading attempts.

2. Easy: Hash based encryption is easy to implement and it is very flexible.
3. Future proof: Because of it’s flexibility, hash based encryption can be used on long-term, with no need to adapt the im-

plementation itself.
4. Efficiency: The h-Box input size can be increased without loosing efficiency significantly. For example: On System 1,

hashing a 10 MB file to 1MB output took 0.0175 seconds, while hashing a 100 MB file to same length took only 0.01817
seconds.

5. Interchangeable: If the security of the hash function is broken, it can be replaced easily.

Critical appraisal for the coursework and speed tests
The coursework was started at an unexperienced status regarding hash speed and security. Therefore the strategy was to spend
most of the time to evaluate the security and perform speed tests at large extent, without restriction of the test scope. Main goal
was to learn more about the hash functions and to leave the door open for any result. It was very challenging to measure all con-
stellations and isolate the influencing factors to reduce noise. It was necessary to adapt the test procedure several times, including
manual re-tests. Finally a lot of data was collected, which potential was not utilized fully for the coursework because no more time
left. Only few findings and statements were possible. The data has to be analyzed in detail afterwards (e.g. throughput).

At the beginning of the coursework, each hash operation was executed only one time. This approach had a high risk of noise. To
reduce noise, it was necessary to execute each hash operation 10 times to calculate the average time. In consequence, approx. 2
days of time were lost.

Furthermore, after screening the results on system 3 (i.e. XEON with HDD), it was recognized that the first hash operation took
always significantly longer time. The first operation hashed a given file to 32 bytes. The second operation hashed the same file
again to 500 bytes, but took only a fraction of the previous one. For example, b3sum hashed a 10 GB file to 32 byte in 14.59 sec-
onds. Directly after this, the same file was hashed to 500 bytes in 1.80 seconds; the second operation took 12.79 seconds less. This
behavior was very strange at the first look. O’CONNOR from the Blake3-Team was asked to support the root cause analysis; see
issue 172 on github.com/BLAKE3-team/BLAKE3. After several manual retests and going through an elimination process, the rea-
son for that behavior is mainly identified in the reading and caching process of Hard Disk Drives (HDDs). All hash operations of a
loop pointed to the same input file. The system continued than with cached data if the next operation points to the same file (-
name). This large difference (i.e. 12.79 seconds in case of 10 GB input) was only observed when HDDs were in use. If SSDs were
in use, the difference was in most of all cases in a range between 10-200 milliseconds. In consequence, all system 3 tests for 32
bytes output were repeated to ensure comparability and overcome the HDD caching and reading issue. Retrospectively, it would
had been a better approach, to name all input files differently, although they are equal (e.g. as “key_10GB.file.A”, “key_10GB.-
file.B”, etc.). By this, tests would include the reading speed of the disk as well. However, this was not necessary for the course-
work. The coursework aimed to compare the hash functions under same conditions. This was reached successfully and noise level
was reduced.

Finally, it was evaluated to write the output to /dev/null instead to disk. After manual retests it was identified that this is not rele-
vant to solve the afore-mentioned problem and was therefore not implemented.

8

https://github.com/BLAKE3-team/BLAKE3

In conclusion, the speed results were useful and adequate for the scope of the coursework. However, in future work, more atten-
tion should be put on a clear definition of measurement goals and strategy to avoid unnecessary operations and noise before test
execution. With a better testing goal definition several re-tests could have been avoided.

But, one is always wiser after the work.

9

Bibliography

1 J-P. Aumasson, “Too Much Crypto”, 2019. [Online]. Available: https://eprint.iacr.org/2019/1492.pdf

2 G. Bertoni, J. Aemen, M. Peeters, G. V. Assche, R. V. Keer and B. Viguier, “KangarooTwelve: fast hashing
based on Keccak-p”, 2016. [Online]. Available: https://eprint.iacr.org/2016/770.pdf

3 J. Guo, G. Liao, G. Liu, M. Liu, K. Qiao, L. Song, “Practical Collision Attacks against Round-Reduced
SHA-3 ”, 2019. [Online]. Available: ⋆ https://eprint.iacr.org/2019/147.pdf

4 M-J. Saarinen and J-P. Aumasson, “The BLAKE2 Cryptographic Hash and Message Authentication Code
(MAC)”, November 2015. [Online]. Available: https://tools.ietf.org/html/rfc7693

5 Y. Hao, “The Boomerang Attacks on BLAKE and BLAKE2”, 2014. [Online]. Available: https://eprint.i-
acr.org/2014/1012.pdf

6 J. O’Connor, J-P Aumasson, S. Neves, Z. Wilcox-O’Hearn, “BLAKE3 one function, fast everywhere”. [On-
line]. Available: https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf

7 J. Lathrop, “Cube attacks on cryptographic hash functions”, 2009. [Online]. Availbale: https://scholarwork-
s.rit.edu/cgi/viewcontent.cgi?article=1653&context=theses

8 “BLAKE2 – fast secure hashing”, https://www.blake2.net

9 S-j. Chang, R. Perlner, W. E. Burr, M. S. Turan, J. M. Kelsey, S. Paul, L. E. Bassham, “Third-Round Report
of the SHA-3 Cryptographic Hash Algorithm Competition”, 2012. [Online]. Available: https://nvlpubs.nist.-
gov/nistpubs/ir/2012/NIST.IR.7896.pdf

List of Appendix

a. Test system and platform configuration
b. Complete speed results for Blake3
c. Complete speed results for KangarooTwelve
d. Complete speed results for Shake
e. speedtest-blake3.sh: Sample shell script
f. SHE.sh: encryption and decryption script as proof of concept

10

https://eprint.iacr.org/2019/1492.pdf
https://tools.ietf.org/html/rfc7693
https://scholarworks.rit.edu/cgi/viewcontent.cgi?article=1653&context=theses
https://scholarworks.rit.edu/cgi/viewcontent.cgi?article=1653&context=theses
https://www.blake2.net/
https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf
https://eprint.iacr.org/2014/1012.pdf
https://eprint.iacr.org/2014/1012.pdf
https://eprint.iacr.org/2016/770.pdf

Appendix a) Test system and platform configuration

System 1 – x64 architecture - High-end Notebook – HP Zbook x360 G5
CPU Intel Core i7-8750H; 6 cores @ Max. 4100 MHz
GPU NVIDIA QUADRO P1000 mobile, GP107GLM
RAM 64 GB (2x32 GB) @ Configured Memory Speed: 2667 MT/s, SODIMM
OS POP!_OS 20.10 (Ubuntu based)
Storage 1TB SSD

System 2 – ARMv8 architecture - Android Tablet Samsung Tab S5e LTE 64GB
CPU Kryo 360; 8 cores @ 2x2000 MHz & 6x1700 MHz
GPU Adreno 615
RAM 4 GB
OS Android
Storage 64GB eMMC

System 3 – x64 architecture - XEON dedicated server
CPU Intel Xeon E31230; 4 cores @ Max. 3200 MHz
GPU none
RAM 4 GB
OS Ubuntu 20.04
Storage 2TB HDD

Appendix b) Complete speed results for Blake3

General hint: each hash pair was repeated 10 times and the average time was calculated.

On system 1 – x64*

 * 32bytes output length was calculated only one time, the gap between std (32b) and 1kb was accepted.

On system 2 – ARM*

 * 32bytes output length was calculated only one time, the gap between std (32b) and 1kb was accepted.

On system 3 – XEON*

* 32bytes output length was calculated twice and the second result was used.

Appendix c) Complete speed results for KangarooTwelve

General hint: each hash pair was repeated 10 times and the average time was calculated.

On system 1 – x64*

 * 32bytes output length was calculated only one time, the gap between std (32b) and 1kb was accepted.

On system 2 – ARM*

* 32bytes output length was calculated only one time, the gap between std (32b) and 1kb was accepted.

On system 3 – XEON*

* 32bytes output length was calculated twice to overcome HDD reading and caching; the second result was used.

Appendix d) Complete speed results for Shake

General hint: each hash pair was repeated 10 times and the average time was calculated.

On System 1 – x64*

 * 32bytes output length was calculated only one time, the gap between std (32b) and 1kb was accepted.

On system 2 – ARM*

 * measurement of pair 1KB/200MB failed and was not repeated because Shake was sorted out. 32bytes output length was calculated only one time, the gap between std (32b) and 1kb was accepted.

On system 3 – XEON*

* 32bytes output length was calculated twice to overcome HDD reading and caching; the second result was used.

Appendix e) speedtest-blake3.sh: Sample shell script

#!/bin/bash

declare -a input=("key_1kb.file" "key_1MB.file" "key_2MB.file" "key_3MB.file" "key_4MB.file" "key_5MB.file"
"key_6MB.file" "key_7MB.file" "key_8MB.file" "key_9MB.file" "key_10MB.file" "key_20MB.file" "key_30MB.file"
"key_40MB.file" "key_50MB.file" "key_60MB.file" "key_70MB.file" "key_80MB.file" "key_90MB.file"
"key_100MB.file" "key_200MB.file" "key_300MB.file" "key_400MB.file" "key_500MB.file" "key_600MB.file"
"key_700MB.file" "key_800MB.file" "key_900MB.file" "key_1GB.file" "key_2GB.file" "key_3GB.file" "key_4GB.file"
"key_5GB.file" "key_6GB.file" "key_7GB.file" "key_8GB.file" "key_9GB.file" "key_10GB.file")

declare -a output=("32" "500" "5000" "50000" "500000" "1000000" "1500000" "2000000" "2500000" "3000000"
"3500000" "4000000" "4500000" "5000000" "10000000" "15000000" "20000000" "25000000" "30000000" "35000000"
"40000000" "45000000" "50000000" "100000000" "150000000" "200000000" "250000000" "300000000" "350000000"
"400000000" "450000000" "500000000")

for i in "${input[@]}"
do
key_file=$i
#echo File $key_file

for o in "${output[@]}"
do

output_size=$o

counter=1
start_time="$(date -u +%s.%N)"
#echo STARTTIME $start_time

while [$counter -lt 11];
do

b3sum $key_file -l $output_size > speedtest.txt
#ls -lh speedtest.txt
#rm speedtest.txt
#echo "$(date -u +%s.%N)"
counter=$[$counter+1]

done

end_time="$(date -u +%s.%N)"
elapsed="$(bc <<<"$end_time-$start_time")"
average="$(bc -l <<<"$elapsed/10")"
#echo ENDTIME $end_time
#echo ELAPSED $elapsed

echo -e Input $key_file "\t\t " Output "$(ls -s
 speedtest.txt --block-size=K)" "\t\t "AVERAGE"\t\t ""\t\

t " $average

done

echo ""
echo ""

done

Appendix f) SHE.sh: encryption and decryption script as proof of
concept

read -p "Enter your key file: " key
read -p "Enter your input file: " plaintext
read -p "Enter your output file: " output

find out the size of the plaintext file in bytes
plain_size=$(stat --format="%s" $plaintext)

h-BOX: derive the key as long as the plaintext file
echo "========================= STEP 1: derive key"
time b3sum $key -l $plain_size --raw --no-names > derivedkey.txt
derived_key_size=$(stat --format="%s" derivedkey.txt)

echo "========================= STEP 2: XOR the two files together"
time ./xorfiles derivedkey.txt $plaintext > $output
rm derivedkey.txt
echo "========================= STEP 3: en-/decryption finished. Cleaned up. See output."

